////////////////////////////////////////////////////////////////////// // // Coherent noise function over 1, 2 or 3 dimensions // (copyright Ken Perlin) // // PerlinNoise.cpp: CPerlinNoise (with Mersenne Twister) class // sample imp // ////////////////////////////////////////////////////////////////////// #include "PerlinNoise.h" #include #ifdef _DEBUG #undef THIS_FILE static char THIS_FILE[]=__FILE__; #define new DEBUG_NEW #endif ////////////////////////////////////////////////////////////////////// // \z/ ////////////////////////////////////////////////////////////////////// CPerlinNoise::CPerlinNoise() { unsigned long init[4]={0x123, 0x234, 0x345, 0x456}, length=4; start = 1 ; mti = mt_N+1; init_by_array(init, length); } CPerlinNoise::CPerlinNoise(unsigned long seed) { start = 1; mti=mt_N+1; /* mti==mt_NN+1 means mt[mt_NN] is not initialized */ init_genrand(seed) ; } CPerlinNoise::~CPerlinNoise() { } ////////////////////////////////////////////////////////////////////// // Perlin Noise ////////////////////////////////////////////////////////////////////// /* coherent noise function over 1, 2 or 3 dimensions */ /* (copyright Ken Perlin) */ double CPerlinNoise::noise1(double arg) { int bx0, bx1; double rx0, rx1, sx, t, u, v, vec[1]; vec[0] = arg; if (start) { start = 0; init(); } pn_setup(0, bx0,bx1, rx0,rx1); sx = pn_s_curve(rx0); u = rx0 * g1[ p[ bx0 ] ]; v = rx1 * g1[ p[ bx1 ] ]; return pn_lerp(sx, u, v); } double CPerlinNoise::noise2(double vec[2]) { int bx0, bx1, by0, by1, b00, b10, b01, b11; double rx0, rx1, ry0, ry1, *q, sx, sy, a, b, t, u, v; int register i, j; if (start) { start = 0; init(); } pn_setup(0, bx0,bx1, rx0,rx1); pn_setup(1, by0,by1, ry0,ry1); i = p[ bx0 ]; j = p[ bx1 ]; b00 = p[ i + by0 ]; b10 = p[ j + by0 ]; b01 = p[ i + by1 ]; b11 = p[ j + by1 ]; sx = pn_s_curve(rx0); sy = pn_s_curve(ry0); #define pn_at2(rx,ry) ( rx * q[0] + ry * q[1] ) q = g2[ b00 ] ; u = pn_at2(rx0,ry0); q = g2[ b10 ] ; v = pn_at2(rx1,ry0); a = pn_lerp(sx, u, v); q = g2[ b01 ] ; u = pn_at2(rx0,ry1); q = g2[ b11 ] ; v = pn_at2(rx1,ry1); b = pn_lerp(sx, u, v); return pn_lerp(sy, a, b); } double CPerlinNoise::noise3(double vec[3]) { int bx0, bx1, by0, by1, bz0, bz1, b00, b10, b01, b11; double rx0, rx1, ry0, ry1, rz0, rz1, *q, sy, sz, a, b, c, d, t, u, v; int register i, j; if (start) { start = 0; init(); } pn_setup(0, bx0,bx1, rx0,rx1); pn_setup(1, by0,by1, ry0,ry1); pn_setup(2, bz0,bz1, rz0,rz1); i = p[ bx0 ]; j = p[ bx1 ]; b00 = p[ i + by0 ]; b10 = p[ j + by0 ]; b01 = p[ i + by1 ]; b11 = p[ j + by1 ]; t = pn_s_curve(rx0); sy = pn_s_curve(ry0); sz = pn_s_curve(rz0); #define pn_at3(rx,ry,rz) ( rx * q[0] + ry * q[1] + rz * q[2] ) q = g3[ b00 + bz0 ] ; u = pn_at3(rx0,ry0,rz0); q = g3[ b10 + bz0 ] ; v = pn_at3(rx1,ry0,rz0); a = pn_lerp(t, u, v); q = g3[ b01 + bz0 ] ; u = pn_at3(rx0,ry1,rz0); q = g3[ b11 + bz0 ] ; v = pn_at3(rx1,ry1,rz0); b = pn_lerp(t, u, v); c = pn_lerp(sy, a, b); q = g3[ b00 + bz1 ] ; u = pn_at3(rx0,ry0,rz1); q = g3[ b10 + bz1 ] ; v = pn_at3(rx1,ry0,rz1); a = pn_lerp(t, u, v); q = g3[ b01 + bz1 ] ; u = pn_at3(rx0,ry1,rz1); q = g3[ b11 + bz1 ] ; v = pn_at3(rx1,ry1,rz1); b = pn_lerp(t, u, v); d = pn_lerp(sy, a, b); return pn_lerp(sz, c, d); } void CPerlinNoise::normalize2(double v[2]) { double s; s = sqrt(v[0] * v[0] + v[1] * v[1]); v[0] = v[0] / s; v[1] = v[1] / s; } void CPerlinNoise::normalize3(double v[3]) { double s; s = sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]); v[0] = v[0] / s; v[1] = v[1] / s; v[2] = v[2] / s; } void CPerlinNoise::init(void) { int i, j, k; for (i = 0 ; i < pn_B ; i++) { p[i] = i; g1[i] = (double)((random() % (pn_B + pn_B)) - pn_B) / pn_B; for (j = 0 ; j < 2 ; j++) g2[i][j] = (double)((random() % (pn_B + pn_B)) - pn_B) / pn_B; normalize2(g2[i]); for (j = 0 ; j < 3 ; j++) g3[i][j] = (double)((random() % (pn_B + pn_B)) - pn_B) / pn_B; normalize3(g3[i]); } while (--i) { k = p[i]; p[i] = p[j = random() % pn_B]; p[j] = k; } for (i = 0 ; i < pn_B + 2 ; i++) { p[pn_B + i] = p[i]; g1[pn_B + i] = g1[i]; for (j = 0 ; j < 2 ; j++) g2[pn_B + i][j] = g2[i][j]; for (j = 0 ; j < 3 ; j++) g3[pn_B + i][j] = g3[i][j]; } } double CPerlinNoise::Turbulence1d(double x,int oct) { double tp = x; double val; double amp = 1.0 ; double sum = 0.0 ; int i ; for (i=0 ; i> 30)) + mti); /* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */ /* In the previous versions, MSBs of the seed affect */ /* only MSBs of the array mt[]. */ /* 2002/01/09 modified by Makoto Matsumoto */ mt[mti] &= 0xffffffffUL; /* for >32 bit machines */ } } /* initialize by an array with array-length */ /* init_key is the array for initializing keys */ /* key_length is its length */ /* slight change for C++, 2004/2/26 */ void CPerlinNoise::init_by_array(unsigned long init_key[], int key_length) { int i, j, k; init_genrand(19650218UL); i=1; j=0; k = (mt_N>key_length ? mt_N : key_length); for (; k; k--) { mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1664525UL)) + init_key[j] + j; /* non linear */ mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */ i++; j++; if (i>=mt_N) { mt[0] = mt[mt_N-1]; i=1; } if (j>=key_length) j=0; } for (k=mt_N-1; k; k--) { mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1566083941UL)) - i; /* non linear */ mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */ i++; if (i>=mt_N) { mt[0] = mt[mt_N-1]; i=1; } } mt[0] = 0x80000000UL; /* MSB is 1; assuring non-zero initial array */ } /* generates a random number on [0,0xffffffff]-interval */ unsigned long CPerlinNoise::genrand_int32(void) { unsigned long y; static unsigned long mag01[2]={0x0UL, mt_MATRIX_A}; /* mag01[x] = x * MATRIX_A for x=0,1 */ if (mti >= mt_N) { /* generate N words at one time */ int kk; if (mti == mt_N+1) /* if init_genrand() has not been called, */ init_genrand(5489UL); /* a default initial seed is used */ for (kk=0;kk> 1) ^ mag01[y & 0x1UL]; } for (;kk> 1) ^ mag01[y & 0x1UL]; } y = (mt[mt_N-1]&mt_UPPER_MASK)|(mt[0]&mt_LOWER_MASK); mt[mt_N-1] = mt[mt_M-1] ^ (y >> 1) ^ mag01[y & 0x1UL]; mti = 0; } y = mt[mti++]; /* Tempering */ y ^= (y >> 11); y ^= (y << 7) & 0x9d2c5680UL; y ^= (y << 15) & 0xefc60000UL; y ^= (y >> 18); return y; } /* generates a random number on [0,0x7fffffff]-interval */ long CPerlinNoise::genrand_int31(void) { return (long)(genrand_int32()>>1); } /* generates a random number on [0,1]-real-interval */ double CPerlinNoise::genrand_real1(void) { return genrand_int32()*(1.0/4294967295.0); /* divided by 2^32-1 */ } /* generates a random number on [0,1)-real-interval */ double CPerlinNoise::genrand_real2(void) { return genrand_int32()*(1.0/4294967296.0); /* divided by 2^32 */ } /* generates a random number on (0,1)-real-interval */ double CPerlinNoise::genrand_real3(void) { return (((double)genrand_int32()) + 0.5)*(1.0/4294967296.0); /* divided by 2^32 */ } /* generates a random number on [0,1) with 53-bit resolution*/ double CPerlinNoise::genrand_res53(void) { unsigned long a=genrand_int32()>>5, b=genrand_int32()>>6; return(a*67108864.0+b)*(1.0/9007199254740992.0); }