円周を測る

 段ボールを円に切り取り、それを1直線上に転がし一回転(又は何回転かして後で回数で割ってもよいその方が正確)させて 円周率を求めてみましょう。

 実際に右のようなものを作って測ってみたところ下のような結果になりました。

準備物:段ボール・爪楊枝(円の中心に通してやると転がしやすい)・ハサミ・30p尺

作り方:
1.コンパスで段ボールに円を書く
2.段ボールを適当な半径に切り取る。(今回は4pと6p)
このとき、できるだけ正確に切り取るようにする。
3.爪楊枝を円の中心に通し、コマのようなものを作る。
4.中心を通る線を1本通す。

測り方:
1.一直線の溝を探す。(フローリングなどでよい)
なければ、床に糸を一直線に張る。(壁でも構わないが...)
2.そこを作ったコマを爪楊枝の軸を持ち、床に軽く押しつけるようにして1回転させる。(距離が長すぎる場合は半分)
3.1回転した距離を尺で測る。

実測値:
半径4p…1回転
1回目 25.2cm
2回目 25.1cm
π=3.14375 誤差:0.069%

半径6p…半回転
1回目 18.8cm
2回目 18.7cm
π=3.125 誤差:0.528%

かかった時間:10分ほど
自分でも意外によい値がでたのでびっくりしています。

こういう結果より、円周率が3ちょっとであるということがわかります。


πの求め方へ戻る